

Key features

At a glance

High initial force and acceleration

- Initial force up to 10 times higher than a conventional cylinder of the same diameter
- Highly dynamic response, even at high loads

Judder-free operation

- No mechanical parts moving against one another
- Completely jolt-free with extremely slow movements

Simple positioning

- Controlled by means of pressure using the simplest technology without displacement encoders
- Ideal for dusty and dirty environments
- Robust design

Hermetically sealed design

• Separation between operating

medium and atmosphere

• Zero leakage

Mode of operation

Fluidic Muscle is a tensile actuator which mimics natural muscular movement. It consists of a contraction system and appropriate connectors. The contraction system is formed by a pressure-tight length of rubber hose, sheathed in high-strength fibres. The fibres create a rhomboidal pattern with a three-dimensional grid structure. When internal pressure is applied, the hose expands in its peripheral direction, thus creating a tensile force and a contraction motion in the muscle's longitudinal direction. The usable tensile force is at its maximum at the start of the contraction and then decreases in a virtually linear manner as a function of stroke. An efficient operating range is provided with contractions of up to 15% of the nominal length.

The applications of Fluidic Muscle are as follows:

- Single-acting actuator
- Pneumatic spring

- Note

Fluidic Muscle is intended for use as a tensile actuator only. The expansion in the peripheral direction cannot be used for clamping purposes, since external friction could cause damage to the muscle.

Fluidic Muscle DMSP, with press-fitted connections

The Fluidic Muscle DMSP with pressfitted connections is the result of a thorough analysis of the requirements specification that already existed for the Fluidic Muscle MAS. The resulting new development is therefore considerably lighter, more compact and durable.

- More compact design with more muscle, achieved thanks to a 25% more compact cross section.
- Up to 30% less weight, which translates into a superb force/weight ratio.
- Choice of three integrated adapter variants.

Fluidic Muscle MAS, with screwed connections

The Fluidic Muscle MAS is characterised by a long service life that is made possible through the use of optimised materials. The Fluidic Muscle MAS is also available with an adapter and force-safety device.

→ 18

→ 8

- The force-safety device makes it possible to limit the lifting force, which can for instance protect against trapping objects.
- Use of customer-specific adaptation options.

Key features

Sizing the muscle Sizing software

Sizing should be carried out using the MuscleSIM software. This software can be downloaded from →www.festo.com.

Force curve and load cases

The nominal length of the pneumatic muscle is defined in the non-pressurised, load-free state. It corresponds to

the visible muscle length between the connections. The muscle extends

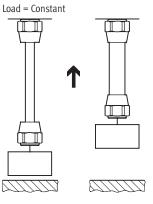
Graphical sizing

Apart from sizing the muscle using the software, it is also possible to define the length of the muscle with the aid of force/displacement diagrams.

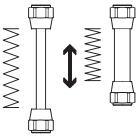
Graphical sizing of the muscle is explained with the aid of two examples \rightarrow 32.

when it is pretensioned by an external force. When pressurized, on the other

hand, the muscle contracts, i.e. its length decreases.


Sizing examples **→** 32

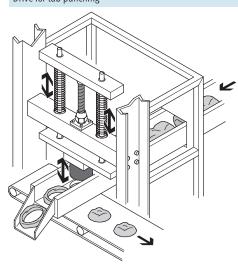
Single-acting actuator


In the simplest case, Fluidic Muscle operates as a single-acting actuator against a constant load. Assuming that this load is permanently attached to the muscle, it will project from its initial position when in the extended non-pressurised state. This operating status is ideal with regard to the technical properties of Fluidic Muscle: when pressurised, a Fluidic Muscle pretensioned in this way develops

Fluidic Muscle behaves like a spring with a changing external force: it follows the direction of action of the force. With Fluidic Muscle, both the pretensioning force of this "pneumatic spring" and its spring stiffness can be varied. Fluidic Muscle can be maximum force with optimum dynamic characteristics and minimum air consumption. The usable force is also at a maximum in this case. If a Fluidic Muscle is required to be free of forces in the extended state, for example to allow a load to be attached, a holding force must first be developed for lifting purposes, leaving a small force component for the motion itself.

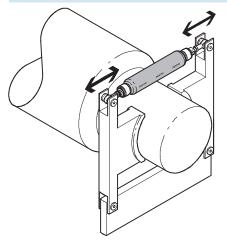
operated as a spring with constant pressure or constant volume. These produce different spring characteristics that enable the spring effect to be matched perfectly to a given application.

Pressure/volume = Constant


- 📱 - 🛛 Note

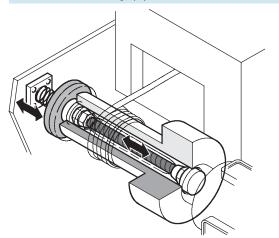
If the muscle is fed with compressed air and the volume blocked, the pressure in the muscle can increase significantly when the external force is varied. The service life of the Fluidic Muscle depends on the contraction, the operating pressure and the temperature \rightarrow 34.

High operating frequencies or high loads can lead to a temperature rise.


Typical applications

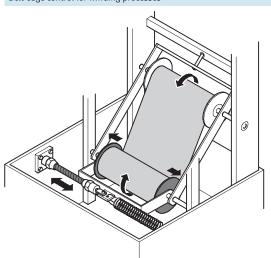
Force and dynamism Drive for tab punching

Very high cycle rates are possible with the muscle, on the one hand because of its low weight and on the other because it has no moving parts (e.g. piston). The simple construction – one muscle pretensioned using two springs – replaces a complicated toggle lever clamping system using cylinders. This makes a frequency increase of 3 to 5 Hz possible. Over 50 million load fluctuations can be achieved in this way.


Emergency stop for rollers

The fluidic muscle is setting new standards in applications that require fast response times. The emergency stop for rollers demands both speed and force. Long machine downtimes in the event of malfunctions can thus be prevented.

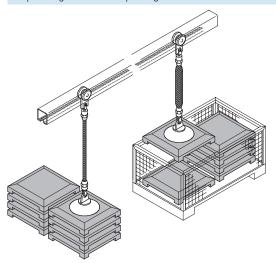
Judder-free movements


Brake actuator for rewinding equipment

The friction-free muscle allows uniform and gentle braking of the pay-out reel, ensuring highly precise winding at constant speed. Control is provided by a proportional control valve whose signals are regulated via force sensors.

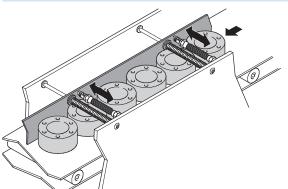
Typical applications

Judder-free movements Belt edge control for winding processes



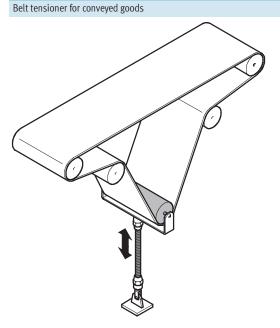
The aim:

uniform winding of paper, foil or textiles. The requirement: a friction-free drive with quick and immediate response characteristics. The solution: Fluidic Muscle. The drum attached to a moving frame is displaced by a pneumatic muscle as soon as the sensor detects misalignment. This means that the winding edge control is 100% efficient.

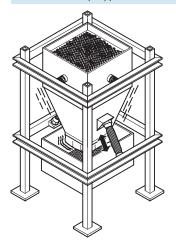

Simple positioning systems

Simple lifting device for manipulating concrete slabs and car wheel rims

Approximate intermediate positions? No problem with pressure regulation. The workpieces can be raised or lowered as required by pressurising or exhausting the muscle via a hand lever valve. Muscle lengths up to 9 m facilitate various types of application.


Adjusting the width of conveyor belts

With small batch sizes, it is often necessary to adapt entire system sections to different component dimensions after a short period of time. This task can be performed with the fluidic muscle in cases where an approximate adjustment is sufficient.


Fluidic Muscle DMSP/MAS Typical applications

Harsh environmental conditions

In dusty or dirty environments, a hermetically sealed fluidic muscle has a major advantage over conventional drives. This seal cannot wear. It is a sturdy, contractible tube that copes with the tough demands of the cement industry with ease.

Drive for a vibratory hopper

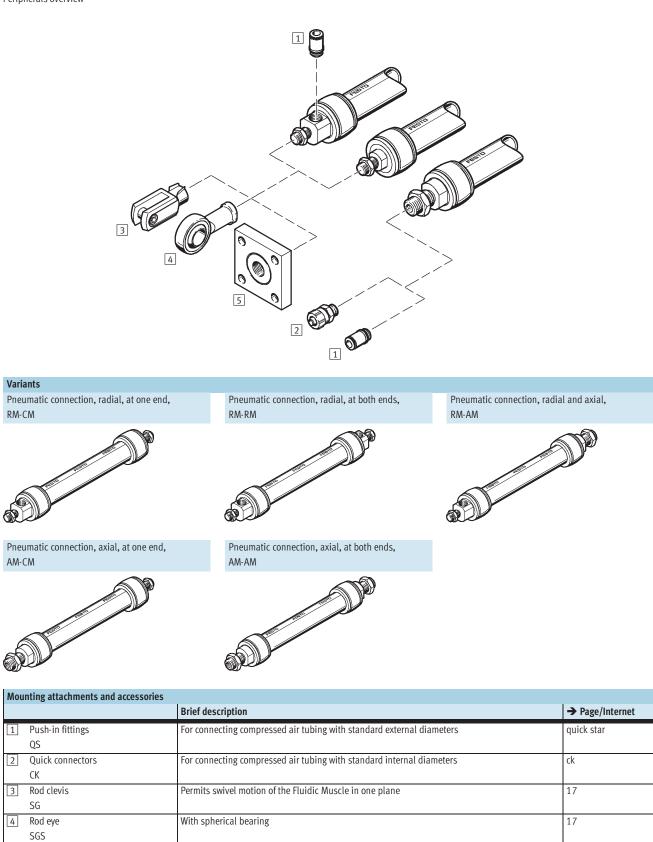
Hoppers and silos are susceptible to the problem of parts jamming during feeding. Fluidic Muscle facilitates stepless regulation of a pneumatic shaker between 10 and 90 Hz, thereby guaranteeing continuous delivery.

Fluidic Muscle DMSP/MAS Product range overview

Function	Version	Туре	Inside dia. [mm]	Nominal length [mm]	Lifting force [N]	Max. permissible pretensioning	Max. permissible contraction	Operating pressure [bar]	→ Page/Internet				
Single-	Fluidic Muscle	with press	sed connectio	n									
acting, pulling	al an	DMSP	10	40 9000	0 630	3% of nominal length	25% of nominal length	0 8	8				
	and the	DMSP	20	60 9000	0 1500	4% of nominal length	25% of nominal length	0 6	8				
	and the	DMSP	40	120 9000	0 6000	5% of nominal length	25% of nominal length	0 6	8				
	Fluidic Muscle	Fluidic Muscle with screwed connections											
	TUTUT	MAS	10	40 9000	0 630	3% of nominal length	25% of nominal length	0 8	18				
	THURS	MAS	20	60 9000	0 1500	4% of nominal length	25% of nominal length	0 6	18				
			I										
	TIMAT	MAS	40	120 9000	0 6000	5% of nominal length	25% of nominal length	0 6	18				

-Note

When replacing a Fluidic Muscle MAS and accessories MXAC (firstgeneration products available until 06/2005) as listed in the table opposite with a Fluidic Muscle MAS and mounting accessories MXAD as

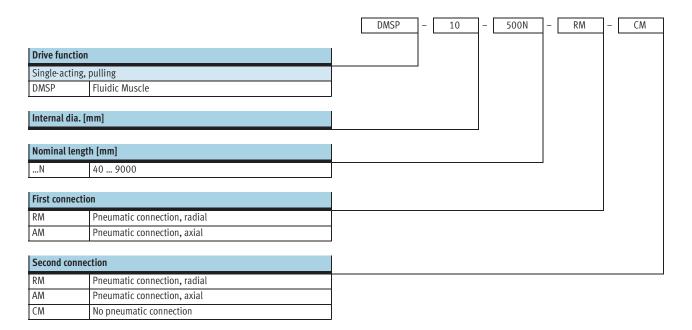

described in this document (part numbers \rightarrow 28), please consult your contact person at Festo. Compatibility cannot be guaranteed in all cases due to changes in installation dimensions.

· L · To be discontinued

Fluidic Mu	scle MAS	Mounting	accessories MXAC
Part No.	Туре	Part No.	Туре
187 594	MAS-10-NAA-MCFK	187 591	MXAC-B10
187 595	MAS-10-NAA-MOFK	187 592	MXAC-A10
187 617	MAS-20-NAA-MCHK	187 593	MXAC-R10
187 618	MAS-20-NAA-MCGK	187 614	MXAC-B16
187 619	MAS-20-NAA-MOHK	187 615	MXAC-A16
187 605	MAS-40-NAA-MCKK	187 616	MXAC-R16
187 606	MAS-40-NAA-MCIK	187 602	MXAC-B20
187 607	MAS-40-NAA-MOKK	187 603	MXAC-A20
		187 604	MXAC-R20

FESTO

Peripherals overview


17

For compensating radial deviations

5

Coupling pieces

KSG/KSZ

Technical data

- ♥ - Size 10 ... 40 mm - ┃ - Nominal length 40 ... 9000 mm - ➡ - Lifting force 0 ... 6000 N

General technical data						
Size		10	20	40		
Pneumatic connection		G1⁄8 G1⁄4		G3⁄/8		
Design		Contraction membrane	·	·		
Mode of operation		Single-acting, pulling				
Internal dia.	[mm]	10	20	40		
Nominal length	[mm]	40 9000	60 9000	120 9000		
Max. additional load, freely suspended	[kg]	30	80	250		
Max. permissible pretensionsing ¹⁾		3% of nominal length	4% of nominal length	5% of nominal length		
Max. permissible contraction		25% of nominal length		· · · · ·		
Max. hysteresis		≤ 3% of nominal length	≤ 2.5% of nominal length			
Max. relaxation		≤ 3% of nominal length				
Repetition accuracy		≤ 1% of nominal length				
Max. perm. offset of connections		Angle tolerance: $\leq 1.0^{\circ}$				
		Parallelism tolerance: ± 0.5% ((up to 400 mm nominal length), ≤ 2	mm (from 400 mm nominal length)		
Type of mounting		With accessories				
Assembly position		Any (an external guide is required if lateral forces occur)				

 $1) \quad \mbox{The max. pretensioning is achieved when the max. permissible freely suspended useful load is attached.}$

Operating and environmental conditions								
Size		10	20	40				
Operating pressure	[bar]	0 8	0 6					
Operating medium		Filtered compressed air, lubricated or unlubricated (other media upon request)						
Ambient temperature	[°C]	-5 +60						
Corrosion resistance class CRC ²⁾		2						

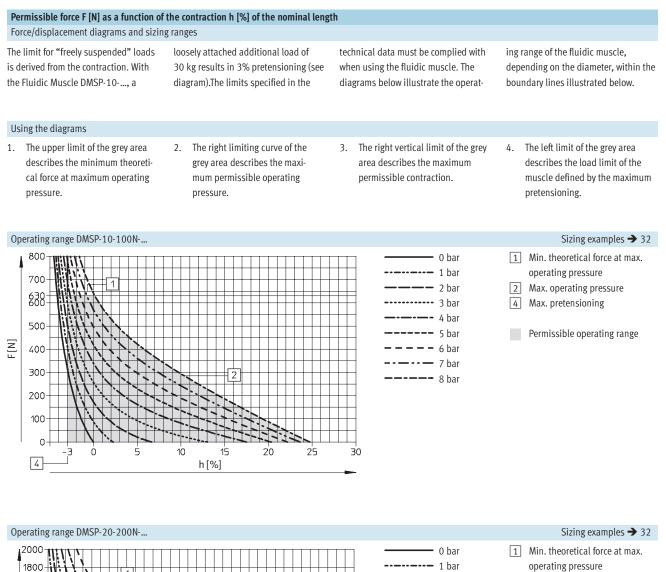
2) Corrosion resistance class 2 according to Festo standard 940 070

Components requiring moderate corrosion resistance. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents.

Forces [N] at max. permissible operating pressure							
Size	10	20	40				
Theoretical force	630	1500	6000				

Weight [g]				
Size		10	20	40
Basic weight at 0 m length	RM-CM	58	169	675
	RM-RM	66	182	707
	RM-AM	75	202	767
	AM-CM	66	189	735
	AM-AM	83	222	827
Additional weight per 1 m length		94	178	340

Materials

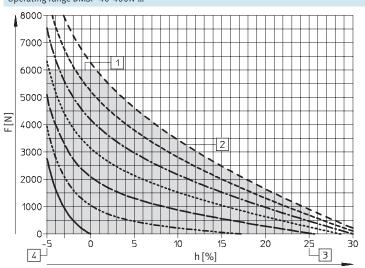

Sectional view

Fluidic muscle	
1 Nut	Galvanised steel
2 Flange	Wrought aluminium alloy, clear anodised
3 Sleeve	Wrought aluminium alloy, clear anodised
4 Membrane	Chloroprene, aramide

Technical data

FESTO

- 2 Max. operating pressure
- 3 Max. deformation
- 4 Max. pretensioning
- [4] Max. pretension


Permissible operating range

Ob	perating range	e DMSP-20-2	00N					
1	2000							
1	1800							\square
	1600			+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$				
	1600 1500 1500 1400							
		NNN						
_	1200							Η
F [N]	1000				2			H
ш	800 1							\square
	600							
	N	NNI	` ! •!	↑. .[1				
	400			•••••	<u>+</u>			
	200	\mathbb{N}	+1++					H
	0+++		*++-			1		Ц
	-4	0	5	10	15 h [0/]	20	25 	30
					h[%]			-

 0 bar
 1 bar
 2 bar
 3 bar
 4 bar
 5 bar
 6 bar

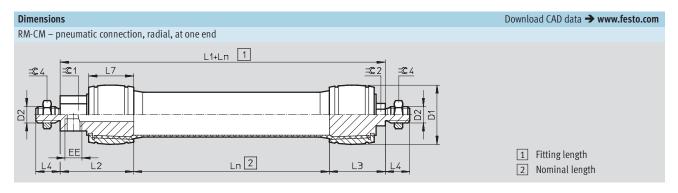
Technical data

Operating range DMSP-40-400N-...

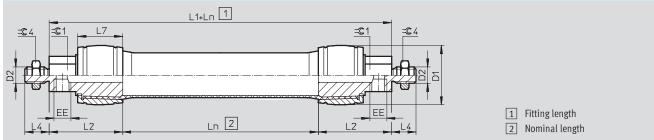
FESTO

Sizing examples → 32 1 Min. theoretical force at max.

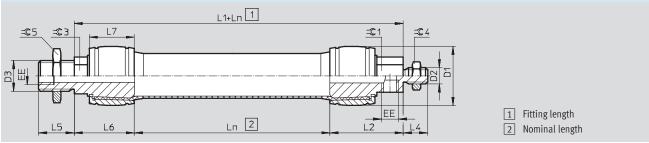
- operating pressure
- 2 Max. operating pressure
- 3 Max. deformation
- 4 Max. pretensioning


Permissible operating range

- 闄 - Note

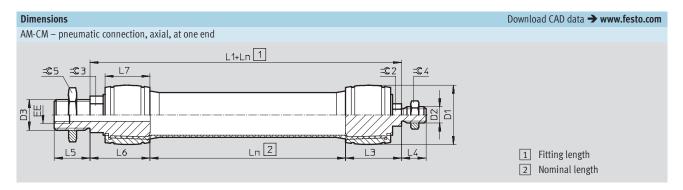

The diagrams were determined using muscles with standard length (standard length = 10x internal dia.), sizing should therefore be carried out using the Fluidic Muscle sizing software. The software is available at the address → www.festo.com.

Approximate sizing is possible using the force/displacement diagram. Properties that influence the dependence between force and displacement, such as material properties, manufacturing deviations and nominal length, are not taken into account in these diagrams. The theoretical force can therefore increase by up to ten per cent. Deviations can be compensated by means of pressure adaptation up to the maximum permissible operating pressure.

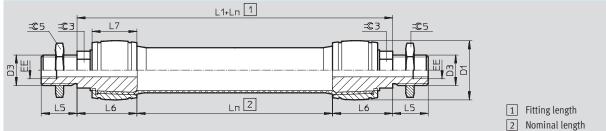

FESTO

RM-RM – pneumatic connection, radial, at both ends

AM-RM – pneumatic connection, axial and radial



Size	D1	D2	D3	EE ²⁾	Ln ¹⁾		L1			L2
	max.				min.	max.	RM-CM	RM-RM	AM-RM	
10	22	M8	M16x1.5	G1⁄8	40		62	72	63	36
20	35	M10x1.25	M20x1.5	G1⁄4	60	9000	95	113	97	56.5
40	57	M16x1.5	M30x1.5	G3⁄8	120		127	144	131	72
										len en e
Size	L3	L4	L5	L6	L7	=C1 ²⁾	=©2 ²⁾	=©3 ²⁾	=©4	=©5
10	26	15	16	27	19	14	10	17	13	24
20	38.5	20	18	40.5	30	19	12	20	17	30
40	55	24	35	59	44	30	19	30	24	46


1) Tolerance < 100 mm ±1 mm, 100 ... 400 mm ±1%, > 400 mm ±4 mm.

2) Parallel orientation of the spanner flats on the left and right connection side can lead to deviations (for production reasons).

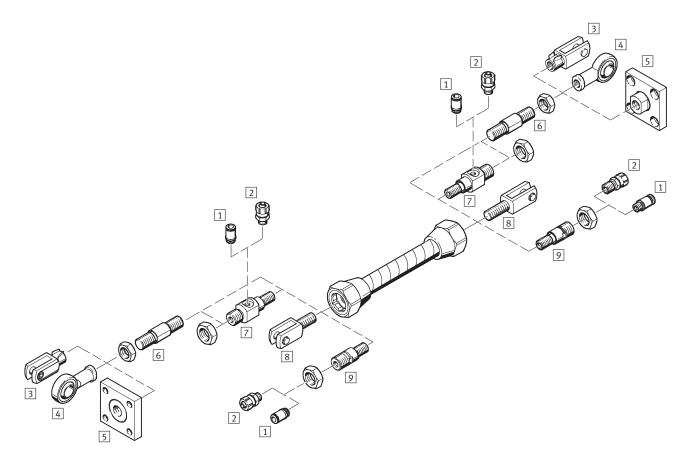
FESTO

AM-AM – pneumatic connection, axial, at both ends

Size	D1	D2	D3	EE	Ln	Ln ¹⁾		Ln ¹⁾ L1		1	L3
	max.				min.	max.	AM-CM	AM-AM			
10	22	M8	M16x1.5	G1⁄8	40		53	54	26		
20	35	M10x1.25	M20x1.5	G1⁄4	60	9000	79	81	38.5		
40	57	M16x1.5	M30x1.5	G3⁄8	120		114	118	55		

Size	L4	L5	L6	L7	=C1 ²⁾	=C2 ²⁾	=C3 ²⁾	=C4	=©5
10	15	16	27	19	17	10	17	13	24
20	20	18	40.5	30	19	12	20	17	30
40	24	35	59	44	30	19	30	24	46

Tolerance < 100 mm ±1 mm, 100 ... 400 mm ±1%, > 400 mm ±4 mm.
 Parallel orientation of the spanner flats on the left and right connection side can lead to deviations (for production reasons).


Fluidic Muscle DMSP, with press-fitted connections Ordering data – Modular products

Module No.	Function	Size	Nominal length	First connection	Second connection
541 403	DMSP	10	40 9 000	RM	СМ
541 404		20		AM	RM
541 405		40			AM
Ordering					
example					
541 404	DMSP	- 20	- 5 000 N	– AM	– RM

0	dering table							
Si	ze		10	20	40	Condi-	Code	Enter
						tions		code
Μ	Module No.		541 403	541 404	541 405			
	Function		Fluidic Muscle with pres	ss-fitted connections			DMSP	DMSP
	Size	[mm]	10	20	40			
	Nominal length	[mm]	40 9000	60 9000	120 9000		N	N
	First connection		Radial, male thread				-RM	
			Connecting thread / supply port					
			M8 / G1⁄8	M10x1.25 / G1⁄4	M16x1.5 / G3⁄8			
			Axial, male thread				-AM	
			Connecting thread / sup					
			M16x1.5 / G1⁄8	M20x1.5 / G1⁄4	M30x1.5 / G3⁄8			
	Second connection		Closed, male thread				-CM	
			Connecting thread					
			M8	M10x1.25	M16x1.5			
			Radial, male thread				-RM	
			Connecting thread / sup	oply port				
			M8 / G1⁄8	M10x1.25 / G1⁄4	M16x1.5 / G3⁄8			
			Axial, male thread				-AM	
			Connecting thread / supply port					
			M16x1.5 / G ¹ ⁄8	M20x1.5 / G1⁄4	M30x1.5 / G3⁄8			

Transfer order code										
		DMSP	-		-	N	-		-	

Ordering data							Technica	al data 🗲 piston rod attachment
Designation	For size	Part No.	Туре		Designation	For size	Part No.	Туре
Rod eye SGS					Coupling piece	KSG		
	10	9 255	SGS-M8	Γ		10	-	
(A))	20	9 261	SGS-M10x1,25			20	32 963	KSG-M10x1,25
OL -	40	9 263	SGS-M16x1,5			40	32 965	KSG-M16x1,5
						-		
Rod clevis SG					Coupling piece	KSZ		
	10	3 111	SG-M8			10	36 124	KSZ-M8
	20	6 1 4 4	SG-M10x1,25			20	36 125	KSZ-M10x1,25
(O	40	6 1 4 6	SG-M16x1,5			40	36 127	KSZ-M16x1,5

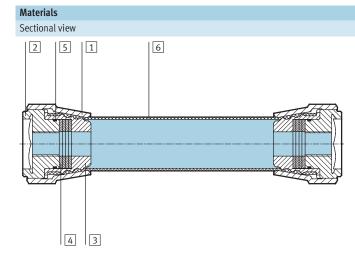
Μοι	Mounting attachments and accessories						
		Brief description	→ Page/Internet				
1	Push-in fittings QS	For connecting compressed air tubing with standard external diameters	quick star				
2	Quick connectors CK	For connecting compressed air tubing with standard internal diameters	ck				
3	Rod clevis SG	Permits a swivelling movement of the fluidic muscle in one plane	31				
4	Rod eye SGS	With spherical bearing	31				
5	Coupling pieces KSG/KSZ	For compensating radial deviations	31				
6	Threaded rod MXAD-T	For connecting drive accessories	31				
7	Radial adapter MXAD-R	For connecting drive accessories and the air supply in radial direction	30				
8	Rod clevis SGA	With male thread for direct mounting on fluidic muscle	31				
9	Axial adapter MXAD-A	For connecting drive accessories and the air supply in axial direction	30				

Drive function Single-acting, pulling MAS Fluidic Muscle Internal dia. [mm] Nominal length [mm] N 40 9000	
Single-acting, pulling MAS Fluidic Muscle Internal dia. [mm] Nominal length [mm]	
MAS Fluidic Muscle Internal dia. [mm] Nominal length [mm]	
Internal dia. [mm] Nominal length [mm]	
Nominal length [mm]	
N 40 9000	
Material	
AA Standard material (chloroprene, aramide)	
Connection type	
MC Open at one end	
MO Open at both ends	
Connection type	
K With force compensator	
0 Without force compensator	
Accessories supplied loose	
Adapter	
ER 1 adapter for radial air supply, at one end	
EA 1 adapter for axial air supply, at one end	
BR 2 adapters for radial air supply, at both ends	
BA 2 adapters for axial air supply, at both ends	
RA 1 adapter for radial and 1 adapter for axial air supply	
Mounting	
EG 1 threaded rod for mounting, at one end]
BG 2 threaded rods for mounting, at both ends	

FESTO

General technical data					
Size		10	20	40	
Pneumatic connection		→ Adapter MXAD from pag	je 30		
Design		Contraction diaphragm			
Mode of operation		Single-acting, pulling			
Internal dia.	[mm]	10	20	40	
Nominal length	[mm]	40 9000	60 9000	120 9000	
Max. additional load, freely suspended	[kg]	30	80	250	
Max. permissible pretensionsing ¹⁾	Without force	3% of nominal length	4% of nominal length	5% of nominal length	
	compensator				
	With force	3% of nominal length	3% of nominal length	3% of nominal length	
	compensator				
Max. permissible contraction		25% of nominal length			
Max. hysteresis		≤ 3% of nominal length	≤ 2.5% of nominal length		
Max. relaxation		≤ 4% of nominal length	·	≤ 3% of nominal length	
Repetition accuracy		\leq 1% of nominal length			
Type of mounting		With accessories			
Assembly position		Any (an external guide is requ	ired if lateral forces occur)		

1) The max. pretensioning is achieved when the max. permissible freely suspended useful load is attached.

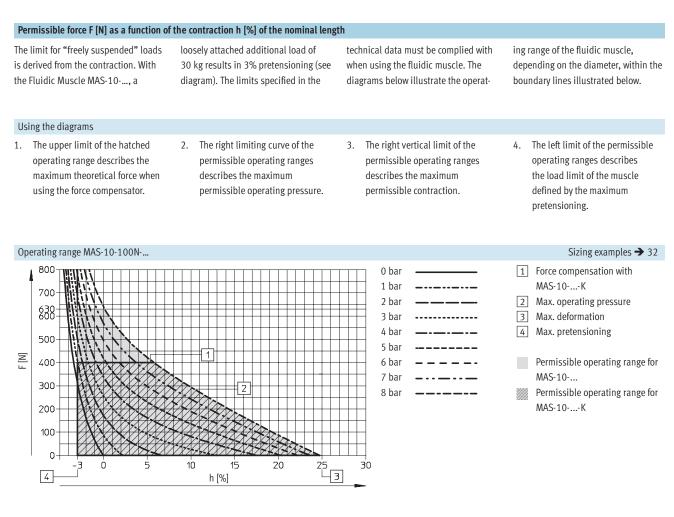

Operating and environmental conditions						
Size		10	20	40		
Operating pressure	[bar]	0 8	0 6			
Operating medium		Filtered compresse	d air, lubricated or unlubricated (ot	her media upon request)		
Ambient temperature	[°C]	-5 +60				
Corrosion resistance class CRC ²⁾		2				

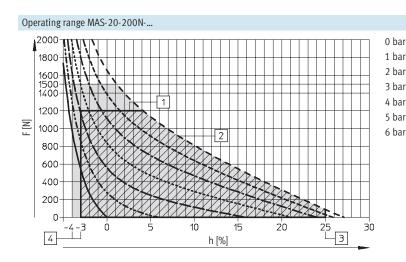
2) Corrosion resistance class 2 according to Festo standard 940 070 Components requiring moderate corrosion resistance. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents.

Forces [N] at max. permissible operating pressure						
Size	10	20	40			
Theoretical force	630	1500	6000			
Force compensation	400	1200	4000			

FESTO

Weight [g]				
Size		10	20	40
Basic weight at 0 m length		77	238	673
Additional weight per 1 m length		94	178	340
Connection without force compensator	MO	38	114	331
	MC	39	124	342
Connection with force compensator	MO	49	153	521
	MC	49	153	521

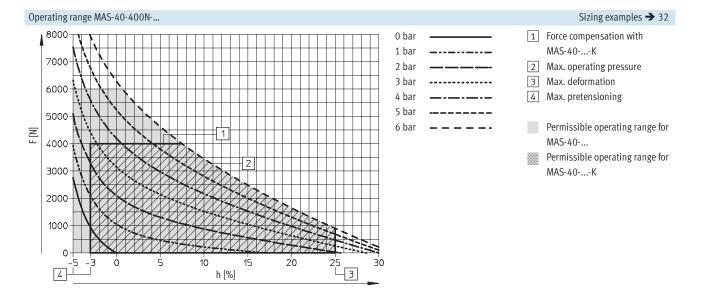

Fluidic	muscle


Fluid	lic muscle	
1	Union nuts	Wrought aluminium alloy, clear anodised
2	Flange	Wrought aluminium alloy, blue anodised
3	Internal cone	Wrought aluminium alloy, clear anodised
4	Cup springs	Steel
5	Sealing ring	Nitrile rubber
6	Diaphragm hose	Chloroprene, aramide
-	Adhesive	Loctite 243 (thread locking agent)
-	Lubricant	Klüberplex BE 31-102
	Note on materials	Copper, PTFE and silicone-free

I

Technical data

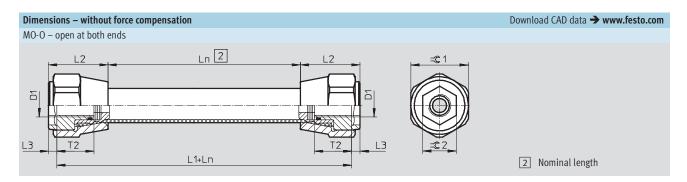
FESTO



- 1 Force compensation with MAS-20-...-K
- 2 Max. operating pressure
- 3 Max. deformation
- 4 Max. pretensioning

Permissible operating range for MAS-20-...

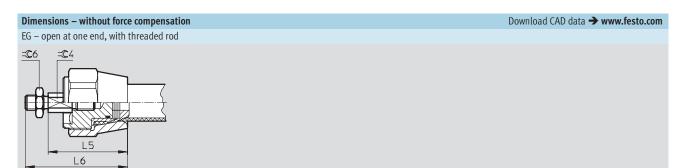
Permissible operating range for MAS-20-...-K

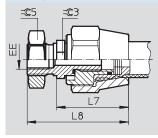

Technical data

- 闄 - Note

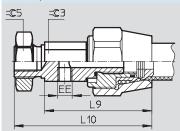
The specified pretensioning applies to the design without force compensation – the diagrams were determined using muscles with standard length (standard length = 10x internal dia.), sizing should therefore be carried out using the Fluidic Muscle sizing software. The software is available at the address → www.festo.com. Approximate sizing is possible using the force/displacement diagram. Properties that influence the dependence between force and displacement, such as material properties, manufacturing deviations and nominal length, are not taken into account in these diagrams. The theoretical force can therefore increase by up to ten per cent. Deviations can be compensated by means of pressure adaptation up to the maximum permissible operating pressure.

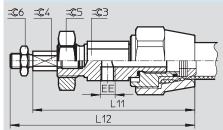
FESTO


MC-O – open at one end

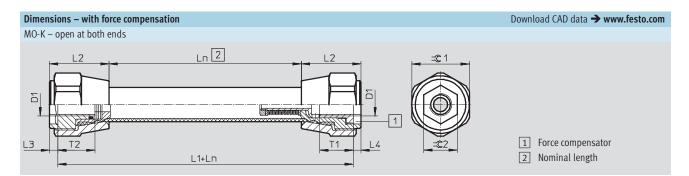

Size	D1	D2	L	n	L1
			min.	max.	
10	M10x1.25	M10x1.25	40		60.2
20	M16x1.5	M10x1.25	60	9000 ¹⁾	73
40	M20x1.5	M16x1.5	120		95

Size	L2	L3	T2	T3	=©1	=©2
10	34.1	4	10	10	27	17
20	42.5	6	26.5	15	41	24
40	55.5	8	21.8	20	60	41


1) Tolerance \leq 100 mm ±1 mm, 100 ... 400 mm ±1%, > 400 mm ±4 mm.


EA/BA – pneumatic connection, axial, one end/both ends

ER/BR - pneumatic connection, radial, one end/both ends

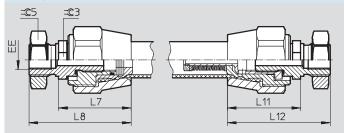

ER/BR-EG/BG - pneumatic connection, radial with threaded rod, one end/both ends

Size	EI	EE		L6	L7	L8	L9
	Axial	Radial					
10	G1⁄8	M5	46.1	61.1	42.6	60	58.2
20	G1⁄4	G1⁄8	52.5	67.5	49	69	71
40	G3⁄8	G1⁄4	67.5	91.5	63	101	93

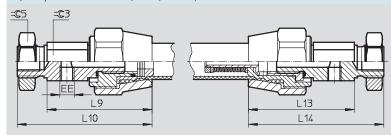
Size	L10	L11	L12	=©3	<i>≕</i> ©4	<i>=</i> ©5	<i>≕</i> ©6
10	75.6	96.6	111.6	17	11	24	17
20	91	107	122	24	11	32	17
40	131	151	175	36	17	46	24

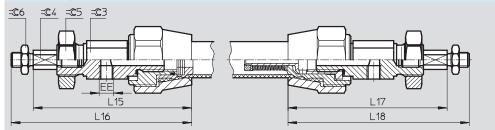
FESTO

MC-K – open at one end


Size	D1	D2	L	n	L1	L2
			min.	max.		
10	M10x1.25	M10x1.25	40	9000 ¹⁾	61.7	34.1
20	M16x1.5	M10x1.25	60		73.5	42.5
40	M20x1.5	M16x1.5	120		96.5	55.5

Size	L3	L4	T1	T2	T3	=G1	<i>=</i> ©2
10	4	2.5	15	10	10	27	17
20	6	5.5	24	26.5	15	41	24
40	8	6.5	30	21.8	20	60	41


1) Tolerance \leq 100 mm ±1 mm, 100 ... 400 mm ±1%, > 400 mm ±4 mm.


EA/BA – pneumatic connection, axial, one end/both ends

ER/BR - pneumatic connection, radial, one end/both ends

EA/BA-EG/BG - pneumatic connection, radial with threaded rod, one end/both ends

Size	EE		L5	L6	L7	L8	L9	L10	L11	L12
	Axial	Radial								
10	G1⁄8	M5	46.1	61.1	42.6	60	58.2	75.6	44.1	61.5
20	G1⁄4	G1⁄8	52.5	67.5	49	69	71	91	49.5	69.5
40	G3⁄8	G1⁄4	67.5	91.5	63	101	93	131	64.5	102.5
Size	L13	L14	L15	L16	L17	L18	=©3	=©4	=©5	=©6

Size	L13	L14	L15	L16	L17	L18	\C3	≍ ©4	- ⊂5	=©6
10	59.7	77.1	96.6	111.6	98.1	113.1	17	11	24	17
20	71.5	91.5	107	122	107.5	122.5	24	11	32	17
40	94.5	132.5	151	175	152.5	176.6	36	17	46	24

Fluidic Muscle MAS, with screwed connections Ordering data - Modular products

FESTO

M Mandator] Mandatory data													
Module No.	Function	Inside dia.	Nominal length	Material	Connection type	Connector type	Adapter	Mounting						
534 201	MAS	10	N	AA	МС	К	ER	EG						
534 202		20			MO	0	EA	BG						
534 203		40					BR							
							BA							
							RA							
Ordering														
example														
534 201	MAS	- 10	- 500N	– AA	– MC	– K	– ER	– EG						

Or	dering table					_		
Siz	e		10	20	40	Condi-	Code	Enter
						tions		code
Μ	Module No.		534 201	534 202	534 203			
	Function		Fluidic Muscle with screwed	l connections			MAS	MAS
	Internal dia.	[mm]	10	20	40			
	Nominal length	[mm]	40 9000	60 9000	120 9000		N	
	Material	Material Standard material (chloroprene)						-AA
	Connection type		Fluidic Muscle open at one	end			-MC	
			Fluidic Muscle open at both		-MO			
	Connector type		Screwed connections with for	orce compensator			-К	
			Screwed connections without	ut force compensator			-0	
0	Adapters, supplied loose		1 adapter for radial air supp	1	-ER			
			1 adapter for axial air supp	ly, at one end		1	-EA	
			2 adapters for radial air sup	2	-BR			
			2 adapters for axial air supp	2	-BA			
			1 adapter for radial and 1 a	dapter for axial air supply	1	2	-RA	
	Mountings, supplied loose		1 threaded rod for mounting, at one end			3	-EG	
			2 threaded rods for mounting	ng, at both ends		4	-BG	

4 **BG**

1 ER, EA

Not in combination with connection type MO. $\fbox{2} \quad \textbf{BR, BA, RA} \quad \text{Not in combination with connection type MC.}$

3 EG

In combination with connection type MO only permissible in combination with adapter BR, RA.

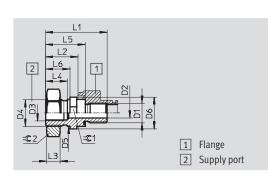
In combination with connection type MC only permissible in combination with adapter ER.

In combination with connection type MO only permissible in combination with adapter BR.

Force and dynamism

Drive for sorting

The ideal drive for sorting tasks and stop functions in delivery processes thanks to the muscle's high speed and good acceleration behaviour. The short response times mean that cycle rates can be increased considerably.

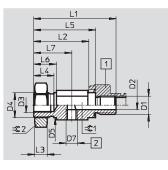

FESTO

Axial adapter MXAD-A

(order code EA/BA/RA)

Material: Adapter: Anodised aluminium Nut: Brass Seal: Nitrile rubber

Dimensions and	Dimensions and ordering data													
For size	D1	D2	D3	D4	D5	D6	L1	L2	L3					
		Ø			Ø	Ø								
					h11									
10	M10x1.25	5	G1⁄8	M16x1.5	16	20	39.9	25.9	8					
20	M16x1.5	8	G1⁄4	M22x1.5	22	26	50.5	26.5	11					
40	M20x1.5	10	G3⁄8	M30x1.5	30	40	73.5	45.5	8					


For size	L4	L5	L6	=©1	=©2	Weight	Part No.	Туре
						[g]		
10	15.4	29.9	17.4	17	24	33	534 400	MXAD-A10
20	18	32.5	20	24	32	69	534 402	MXAD-A16
40	35	53.5	38	36	46	184	534 404	MXAD-A20

Radial adapter MXAD-R

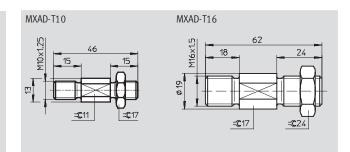
(order code ER/BR/RA)

Material: Adapter: Anodised aluminium Nut: Brass Seal: Nitrile rubber

1	Flange
2	Supply port

Dimensions and ordering data									
For size	D1	D2	D3	D4	D5	D7	L1	L2	L3
		Ø			Ø				
					h11				
10	M10x1.25	5	M10x1.25	M16x1.5	16	M5	55.5	41.5	8
20	M16x1.5	8	M10x1.25	M22x1.5	22	G1⁄8	72.5	48.5	11
40	M20x1.5	10	M16x1.5	M30x1.5	30	G1⁄4	103.5	75.5	8
		•	·	·	·	•	·	•	

For size	L4	L5	L6	L7	=©1	=©2	Weight	Part No. Type
							[g]	
10	15.4	45.5	17.4	26.7	17	24	44	534 401 MXAD-R10
20	18	54.5	20	33.5	24	32	109	534 403 MXAD-R16
40	35	83.5	38	56	36	46	263	534 405 MXAD-R20


FESTO

Threaded rod MXAD-T

(order code EG/BG)

Material: Aluminium

Dimensions and ordering data									
For size	Suitable for threaded connection	5	Part No.	Туре					
		[g]							
10/20	M10x1.25	40	187 597	MXAD-T10					
40	M16x1.5	140	187 609	MXAD-T16					

Ordering data						Technie	cal data → piston rod attac
Designation	For size	Part No.	Туре	Designation	For size	Part No.	Туре
Rod eye SGS ¹⁾				Coupling piece	e KSG ¹⁾		
~ ()	10	9 261	SGS-M10x1,25	6	10	32 963	KSG-M10x1,25
$\sim 11^{-1}$	20	9 261	SGS-M10x1,25		20	32 963	KSG-M10x1,25
(Or a	40	9 263	SGS-M16x1,5		40	32 965	KSG-M16x1,5
Rod clevis SGA	١			Coupling piece	e KSZ ¹⁾		
1 da	10	32 954	SGA-M10x1,25	6	10	36 125	KSZ-M10x1,25
	20	32 954	SGA-M10x1,25		20	36 125	KSZ-M10x1,25
ý Ť	40	10 768	SGA-M16x1,5		40	36 127	KSZ-M16x1,5
		-					
Rod clevis SG ¹)						
~~~ ®	10	6 144	SG-M10x1,25				
	20	6 1 4 4	SG-M10x1,25				
Com	40	6 1 4 6	SG-M16x1,5				

1) Threaded rod MXAD-T... is required.

-- Note When replacing an existing Fluidic Muscle MAS and the corresponding

mounting accessories ightarrow 7

Sizing

### Example 1

Lifting a constant load

A Fluidic Muscle is to be used to engage free of forces with a constant load of 80 kg on a supporting surface and raise this a distance of 100 mm. The operating pressure is to be 6 bar.

The size (diameter and nominal length) of the fluidic muscle is to be found.

#### Note

The sizing should be performed using the Fluidic Muscle sizing software, as the diagrams describe only a muscle of standard length (standard length =

10x internal dia.). The software is available at the address

→ www.festo.com.

The limits specified in the technical data must be complied with when using the muscle.

General conditions	Values
Required force at rest	0 N
Required stroke	100 mm
Required force in contracted state	approx. 800 N
Operating pressure	6 bar

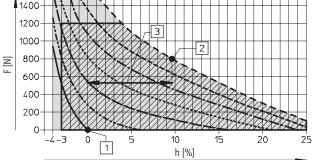
Solution method			
Step 1 Determining the required muscle size	Determine the most suitable muscle diameter on the basis of the required force. The required force is 800 N.	MAS-20 or MAS-40 are available for selection.	
Step 2 Entering load point 1	Load point 1 is entered into the force/ displacement diagram for the MAS-20	Force F = 0 N Pressure p = 0 bar	
Step 3 Entering load point 2	Load point 2 is entered into the force/ displacement graph.	Force F = 800 N Pressure p = 6 bar	
Step 4 Reading the length change	The change in the length of the muscle is read between the load points on the X axis (contraction in %).	Result: 9.6% contraction.	
Step 5 Calculating the nominal length	The required nominal muscle length for a stroke of 100 mm is obtained by dividing by the contraction in %.	Result: 100 mm / 9.6% ~ 1042 mm.	
Step 6 Result	A Fluidic Muscle with a nominal length of 1042 mm should be ordered.	In order to attach a load of 80 kg free of forces and lift this 100 mm, a MAS-20-1042N-AA is required.	
1500		0 bar 1 bar	<ol> <li>Load point 1</li> <li>Load point 2</li> </ol>

2 bar

3 bar

4 bar

5 bar


6 bar

-----

-----

_ _ _ _ _ .

_----



- 3 Length change = 9.6%

Sizing

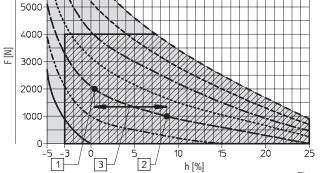
### **Example 2** Use as a tension spring

In this example, the muscle is to be used as a tension spring.

The size (diameter and nominal length) of the fluidic muscle is to be found.

### - Note

Sizing should be performed using the Fluidic Muscle sizing software, as the diagrams describe only a muscle of standard length (standard length = 10x internal dia.). The software is available at the address → www.festo.com. The limits specified in the technical data must be complied with when using the muscle.


General conditions		Values	
Required force in extended state		2000 N	
Required force in contracted state		1000 N	
Required stroke (spring length)		50 mm	
Operating pressure		2 bar	
Solution method			
Step 1	Determine the most suitable muscle	force. The required force is 2000 N,	
Determining the required muscle	diameter on the basis of the required	therefore an MAS-40 is selected.	
size			
Step 2	Load point 1 is entered into the force/	Force F = 2000 N	
Entering load point 1	displacement diagram for the MAS-40	Pressure p = 2 bar	
Step 3	Load point 2 is entered into the force/	Force F = 1000 N	
Entering load point 2	displacement graph.	Pressure p = 2 bar	
Step 4	The change in the length of the muscle	Result:	
Reading the length change	is read between the load points on the X axis (contraction in %).	8.7% contraction.	
Step 5	The required nominal muscle length	Result:	
Calculating the nominal length	for a stroke of 50 mm is obtained by	50 mm / 8.7% ~ 544 mm.	
g	dividing by the contraction in %.	,	
Step 6	A Fluidic Muscle with a nominal length	For use as a tension spring with a	
Result	of 544 mm should be ordered.	force of 2000 N and a spring travel of	
		50 mm, a is required.	
		·	
6000		0 bar	1 Load point 1
5000		1 bar	2 Load point 2

2 bar 3 bar

4 bar

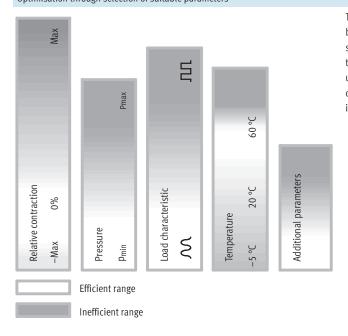
5 bar

6 bar



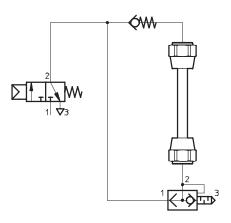
- 3 Length change = 8.7%

FESTO


-----

_ _ _ _ .

_ - - _


Sizing

### **Service life (bar height = meaning / influence)** Optimisation through selection of suitable parameters



The service life of the fluidic muscle is between 100000 and 10 million switching cycles for typical applications. Optimisations can be made using the information from the left diagram. The service life thus increases due to a reduction in the relative contraction (use of a longer muscle). It is also recommended that the pressure be reduced, which is possible because the fluidic muscle is more powerful with lower relative contraction. This measure also improves the service life.

### Reducing the thermal load



The service life of the Fluidic Muscle depends on the contraction, the operating pressure and the temperature. High operating frequencies or high loads can lead to a temperature rise. Targeted pressurisation on one side and venting on the other side enables. the thermal load on the component to be reduced and the service life of the fluidic muscle to be increased (only with fluidic muscle open at both ends).