RE 20 482/07.02

Replaces: 10.97

Pre-fill valve
 Type SF

Nominal sizes 125 to 400
Series 4X
Maximum operating pressure 350 bar

Overview of contents

Contents
Features
Ordering details
Symbols
Function, section
Technical data
Calculation of the pilot pressure required for opening
Unit dimensions
Maximum flows for various applications

Page
1 - For flange connections
1 - For reservoir mounting

- With or without de-compression
- As a check valve
- Reduced shock noise due to damping measures

4 to 6

Ordering details

© 2002

by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main
All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorisation of Bosch Rexroth AG. In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.
This document was prepared with the greatest of care, and all statements have been examined for correctness. This document is subject to alterations for reason of the continuing further developments of products. No liability can be accepted for any incorrect or incomplete statements.

Connection type A (for flange connections)

Connection type B
(for reservoir mounting)

Connection type K
(as check valve)

Function, section

The type SF is a hydraulic pilot operated check valve. It is used for leak-free isolation of pressurised circuits, primarly press cylinders. Due it its good flow characteristics and the relatively low closing force of the main poppet compression spring (5), the valve is ideally suited for anti-cavitation functions and the pre-filling, for example, of the main cylinders on a press during fast closing movements.
The valve basically consists of the housing (1), control spool (2), main poppet (3), pilot poppet (4) and compression springs (5) and (6).

Version without de-compression

In the valve free-flow occurs from A to B. In the opposite direction the main poppet (3) is held on its seat by spring (5) and the pressure acting on port B . When control port X is pressurised, the control spool (2) is forced down against the spring (6) and moves the main poppet (3) from its seat. Hence the valve now also has free-flow in the opposite direction.

Version with de-compression

The way in which this version operates is very similar to the way in which the version without de-compression.
When control port X is pressurised the control spool (2) at first only opens the pilot poppet (4). Shock-free de-compression of the entrapped fuild is therby guaranteed.

For both versions the following is true:

The opening time can be influenced by fitting a throttle in the pilot line.
The valve is designed on a modular basis, i.e. all models can be built up from one basic valve.
A limit switch can be fitted on the pilot piston to monitor the open position (on request).
See page 3 for the technical data to calculate the required control pressure.

Type SF... A1-1-4X/

Type SF... A0-1-4XI

Technical data (for applications outside these applications, please consult us!)

Pressure fluid	M ineral oil (HL, HLP) to DIN 51 524; Fast bio-degradable pressure fluids to VDMA 24 568 (also see RE 90 221); HETG (rape seed oil); Other pressure fluids on request		
Pressure fluid temperature range	${ }^{\circ} \mathrm{C}$		
Viscosity range	-30 to +80		
Degree of contamination	$\mathrm{mm}^{2} / \mathrm{s}$		
10 to 800			Maximum permissible degree of contamination of the pressure
:---			
fluid is to NAS 1638 class 9. We therefore recommend a filter with			
a minimum retention rate of $\mathrm{B}_{10} \geq 75$.			

Calculation of the required control pressure for opening the valve

NS	$\mathbf{A}_{\mathbf{1}}$ in $\mathbf{c m}^{\mathbf{2}}$	$\mathbf{A}_{\mathbf{2}}{ }^{2)}$ in $\mathbf{c m}^{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$ in $\mathbf{c m}^{\mathbf{2}}$	$\mathbf{s}_{\mathbf{1}}$ in $\mathbf{m m}$	$\mathbf{s}_{\mathbf{2}}$ in $\mathbf{m m}$	$\mathbf{F}_{\mathbf{1}}$ in daN	$\mathbf{F}_{\mathbf{2}}$ in daN	$\mathbf{V}_{\mathbf{s t}}$ in $\mathbf{c m}^{\mathbf{3}}$
$\mathbf{1 2 5}$	101	2.54	24.63	28	19	22 to 36	116 to 234	46.8
$\mathbf{1 5 0}$	153.93	3.8	38.48	35	23	35 to 57	195 to 355	88.5
$\mathbf{2 0 0}$	216.42	4.9	50.26	42	27	49 to 76	246 to 454	135.7
$\mathbf{2 5 0}$	373.25	9.62	95.03	53	33	87 to 143	476 to 726	313.6
$\mathbf{3 0 0}$	572.6	13.85	143.14	63	38	149 to 263	716 to 1104	543.9
$\mathbf{3 5 0}$	826.57	21.24	213.83	78	46	218 to 388	1075 to 1560	983.6
$\mathbf{4 0 0}$	1158	32.16	314.16	93	53	331 to 623	1591 to 2297	1665

NS	B1	B2	B3	0 D1	Ø D2	D3	Ø D4	Ø D5	Ø D6	Ø D7	Ø D8	0 D9	Ø D10	0 D11	Ø D12	Ø D13
125	210	22	3	110	42	G3/4	178	250	188	132	210	18	33	120	175	200
150	250	22	3	130	42	G3/4	229	285	212	159	240	22	40	145	220	250
200	275	24	3	150	47	G1	273	340	268	207	295	22	40	155	265	290
250	330	26	3	190	58	G1 1/4	356	405	320	260	355	26	46	180	350	380
300	380	28	4	225	58	G1 1/4	419	460	378	310	410	26	46	220	420	450
350	440	30	4	275	65	G1 1/2	508	520	438	340	470	26	55	295	515	550
400	530	32	4	320	65	G1 1/2	572	580	490	390	525	30	68	345	600	625

NS	Ø D14	Ø D15	Ø D16	D17	H1	H2	H3	H4	H5	N1	N2	T1	T2	T3	T4	T5	R1	Weight
$\mathbf{1 2 5}$	250	310	180	M 30×2	490	136	185	35	80	8	12	37	26	5	40	1	3	75 kg
$\mathbf{1 5 0}$	310	380	230	$M 36 \times 3$	604	160	220	35	90	8	12	37	26	5	60	1	3	135 kg
$\mathbf{2 0 0}$	350	420	270	$M 36 \times 3$	695	180	255	35	100	12	15	37	26	5	50	1	3	185 kg
$\mathbf{2 5 0}$	445	530	355	$M 42 \times 3$	835	240	320	55	120	12	18	57	42	8	60	1	5	365 kg
$\mathbf{3 0 0}$	525	610	425	$M 42 \times 3$	1085	305	390	55	160	12	24	57	42	8	75	1	5	625 kg
$\mathbf{3 5 0}$	640	750	520	$\mathrm{M} 52 \times 3$	1259	360	460	55	200	16	24	57	42	8	80	1	5	1200 kg
$\mathbf{4 0 0}$	720	850	605	$\mathrm{M} 64 \times 3$	1463	423	510	55	210	16	20	57	42	8	95	1	5	1580 kg

Converting connection type "B" to connection type " K"

1. Loosen the fixing screws (20)
2. Remove the control cylinder (4)

4 Control cylinder
5 Name plate
N2 Number of valve fixing screws equally spaced about the circumference. Fixing screws to DIN 912-10.9

NS 125	$M 30 \times 2 \times 120 ;$	$M_{A}=1800 \mathrm{Nm}$
NS 150	$M 36 \times 3 \times 150 ;$	$M_{A}=3100 \mathrm{Nm}$
NS 200	$M 36 \times 3 \times 150 ;$	$M_{A}=3100 \mathrm{Nm}$
NS 250	$M 42 \times 3 \times 180 ;$	$M_{A}=5100 \mathrm{Nm}$
NS 300	$M 42 \times 3 \times 230 ;$	$M_{A}=5100 \mathrm{Nm}$
NS 350	$M 52 \times 3 \times 280 ;$	$M_{A}=10800 \mathrm{Nm}$
NS 400	M $64 \times 3 \times 300 ;$	$M_{A}=20000 \mathrm{Nm}$

T2 Depth of fit

NS	Ø D1	Ø D2	D3	Ø D10	Ø D11	Ø D12	Ø D13	Ø D14	Ø D15	Ø D16	D17	Ø D18	Ø D19
$\mathbf{1 2 5}$	110	42	$\mathrm{G} 3 / 4$	33	120	175	200	250	310	180	M 30×2	159	156
$\mathbf{1 5 0}$	130	42	$\mathrm{G} 3 / 4$	40	145	220	250	310	380	230	M 36×3	200	195
$\mathbf{2 0 0}$	150	47	G 1	40	155	265	290	350	420	270	$\mathrm{M} 36 \times 3$	235	230
$\mathbf{2 5 0}$	190	58	$\mathrm{G1} 1 / 4$	46	180	350	380	445	530	355	$\mathrm{M} 42 \times 3$	315	310
$\mathbf{3 0 0}$	225	58	$\mathrm{G1} 1 / 4$	46	220	420	450	525	610	425	$\mathrm{M} 42 \times 3$	375	370
$\mathbf{3 5 0}$	275	65	$\mathrm{G1} 1 / 2$	55	295	515	550	640	750	520	$\mathrm{M} 52 \times 3$	455	450
$\mathbf{4 0 0}$	320	65	$\mathrm{G1} 1 / 2$	68	345	600	625	720	850	605	M 64×3	530	525

NS	H1	H2	H4	H5	H6	H7	H8	N2	T1	T2	T3	T4	T5	R1	Weight
$\mathbf{1 2 5}$	490	136	35	80	25	207	28	12	37	26	5	40	1	3	60 kg
$\mathbf{1 5 0}$	604	160	35	90	26	248	31	12	37	26	5	60	1	3	105 kg
$\mathbf{2 0 0}$	695	180	35	100	27	298	36	15	37	26	5	50	1	3	145 kg
$\mathbf{2 5 0}$	835	240	55	120	38	379	44	18	57	42	8	60	1	5	295 kg
$\mathbf{3 0 0}$	1085	305	55	160	38	442	59	24	57	42	8	75	1	5	545 kg
$\mathbf{3 5 0}$	1259	360	55	200	50	500	60	24	57	42	8	80	1	5	1000 kg
$\mathbf{4 0 0}$	1463	423	55	210	63	577	80	20	57	42	8	95	1	5	1400 kg

5 Name plate
N2 Number of valve fixing screws equally spaced about the circumference (for dimensions see page 5)
T2 Depth of fit
T6 Depth of fit

NS	Ø D10	Ø D11	Ø D12	Ø D13	Ø D14	Ø D15	Ø D16	D17	Ø D20	Ø D21	H2	H4	H5	N2
125	33	120	175	200	250	310	180	M 30×2	130	105	136	35	80	12
150	40	145	220	250	310	380	230	M 36×3	160	130	160	35	90	12
200	40	155	265	290	350	420	270	M 36×3	185	155	180	35	100	15
250	46	180	350	380	445	530	355	M 42×3	250	206	240	55	120	18
300	46	220	420	450	525	610	425	M 42×3	300	255	305	55	160	24
350	55	295	515	550	640	750	520	M 52×3	350	305	360	55	200	24
400	68	345	600	625	720	850	605	M 64×3	400	355	423	55	210	20

NS	T1	T2	T3	T4	T5	T6	T7	R1	R2	Weight
$\mathbf{1 2 5}$	37	26	5	40	14	12	3	3	0.5	45 kg
$\mathbf{1 5 0}$	37	26	5	60	14	12	3	3	0.5	90 kg
$\mathbf{2 0 0}$	37	26	5	50	14	12	3	3	0.5	105 kg
$\mathbf{2 5 0}$	57	42	8	60	21	19	4.5	5	1.6	205 kg
$\mathbf{3 0 0}$	57	42	8	75	21	19	4.5	5	1.6	355 kg
$\mathbf{3 5 0}$	57	42	8	80	30	27	8	5	1.6	670 kg
$\mathbf{4 0 0}$	57	42	8	95	30	27	6	5	1.6	950 kg

Maximum flow \mathbf{q}_{v} in $\mathrm{L} / \mathrm{min}$ (A to B) for various applications

NS	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$
Application 1	2500	3900	5600	10000	15600	22480	30600
Application 2	2500	3650	5600	10000	14000	19050	24880
Application 3	1700	2440	4340	6775	9750	13280	17340
Application 4	1470	2120	3770	5890	8480	11540	15080
Application 5	590	850	1510	2360	3400	4620	6050

If the pre-fill valve or pipe line is too small, gasses may be released from the oil with the resulting consiquential effects, which in turn often lead, in the long term, to damage to the cylinder seals.

Applications

Application 1

Application 3

Application 5

Application 2

Application 4

1 Cylinder
2 Pre-fill valve
3 This metal sheet is not included within the scope of supply. Its use avoids the formation of a depressed suction vortex if the reservoir is too small and at low oil levels (a).
a Min. 300 mm when cylinder is extended
b Up to 1000 mm at the maximum given flow

Please consult us when operating close to the limiting parameters. How ever, it is often sufficient to choose a pipe one size larger.

Bosch Rexroth AG	Bosch Rexroth Limited	The data specified above only serve to describe Industrial Hydraulics
the product. No statements concerning a certain		
D-97813 Lohr am M ain	Cromwell Road, St Neots,	can be derived from our information. It must be
Zum Eisengießer 1 • D-97816 Lohr am Main	Cambs, PE19 2ES	remembered that our products are subject to a
Telefon $09352 / 18-0$	Tel: $01480 / 223256$	natural process of wear and ageing.
Telefax $09352 / 18-2358$ • Telex $689418-0$	Fax: $01480 / 219052$	
eMail documentation@ boschrexroth.de	E-mail: info@boschrexroth.co.uk	
Internet www.boschrexroth.de		

